Name Student ID

- The term "surplus" is used to denote gains from trade created by a seller producing a commodity and allocating it to a consumer who values it.
- For consumers, the **demand curve**, p = D(q), relates the unit price p of a commodity to its quantity demanded q. It is assumed that D(q) is **decreasing**. If \bar{q} units are traded at price \bar{p} in the market, consumers who are willing to pay a price higher than \bar{p} experience gains from trade. The difference between what consumers are willing to pay for \bar{q} units and what they actually pay for them is called the **consumers' surplus**. Mathematically, the consumer's surplus is defined as

$$CS = \int_0^{\bar{q}} D(q) \ dq - \bar{p}\bar{q}.$$

Geometrically, the consumer's surplus is the area of region bounded above by the demand curve and below by the line $p = \bar{p}$, ranging from q = 0 to $q = \bar{q}$.

• For producers, the **supply curve**, p = S(q), relates the unit price of a commodity to the quantity supplied q (that producers are willing to sell). It is assumed that S(q) is **increasing**. If \bar{q} units are traded in the market at price \bar{p} , those producers who are willing to supply the commodity at a lower price experience gains from trade. The difference between what producers actually receive for \bar{q} units and what they are willing to accept is called the **producers' surplus**. The producers' surplus is defined as

$$PS = \bar{p}\bar{q} - \int_0^{\bar{q}} S(q) \ dq.$$

The producers' surplus represents the area of region bounded above by the line $p = \bar{p}$ and below by the supply curve, ranging from q = 0 to $q = \bar{q}$.

• Gains from trading \bar{q} units of a commodity is called the **total surplus**. It is defined as the area of region between the supply and demand curve, ranging from q = 0 to $q = \bar{q}$,

$$TS(\bar{q}) = \int_0^{\bar{q}} [D(q) - S(q)] dq.$$

As you can see, the total surplus is the sum of the consumers' surplus and producers' surplus, TS = CS + PS.

Example: Suppose the demand curve is $D(q) = 2^{\left(6 - \frac{q}{18}\right)}$ and the supply curve is $S(q) = 4^{\left(1 + \frac{q}{18}\right)}$.

1. Compute the consumers' surplus when q = 18 and p = 32. How much dose the consumers' surplus increases when the quantity of trade changes to 21 and the price changes to $2^{\frac{29}{6}}$?

For
$$q=18$$
, $P=32$, $CS(18) = \int_{0}^{18} 2^{(b-\frac{6}{18})} dq - 18 \times 32$

$$= \int_{0}^{5} 2^{u} (-18) du - 2^{b} \times 3^{2} = 18 \int_{5}^{6} 2^{u} du - 2^{b} \times 3^{2} = \frac{18}{2m2} 2^{u} \Big|_{5}^{6} - 2^{b} \times 3^{2}$$

$$= 2^{6} \times 3^{2} (\frac{1}{2m2} - 1) \approx 254.99$$

$$Similarly, for $q=21$, $P=2^{\frac{29}{6}}$, $CS(21) = \int_{0}^{21} 2^{(6-\frac{9}{68})} dq - 21 \times 2^{\frac{29}{6}} = \frac{18}{2m2} (2^{b} - 2^{\frac{29}{6}}) - 21 \times 2^{\frac{29}{6}}$

$$CS(21) - CS(18) \approx 67.98$$

$$\approx 322.97$$$$

2. Find the value q^* such that $D(q^*) = S(q^*)$. Show that the total surplus TS(q) obtains maximum at $q = q^*$.

$$1. \ D(9^*) = S(9^*) \Rightarrow 2^{(6 - \frac{9^*}{18})} = 4^{(1 + \frac{9^*}{18})} = 2^{2 + \frac{9^*}{9}} \Rightarrow 6 - \frac{9^*}{18} = 2 + \frac{9^*}{9} \Rightarrow 9^* = 24$$

2.
$$\frac{d}{dq} TS(q) = \frac{d}{dq} \int_{0}^{q} D(t) - S(t) dt = D(q) - S(q)$$
. Thus $\frac{d}{dq} TS = 0$ for $q = q^{*}$.

... D(8) is decreasing and S(8) is increasing in D(8)-S(8) is decreasing

3. Calculate consumers' surplus, producers' surplus, and total surplus when $q = q^*$, $p = {\xi = {\chi}^{\frac{1}{2}}}$, $D(q^*) = S(q^*)$. Draw graphs of D(q) and S(q) and indicate regions which represent these surpluses. When ${\chi = {\chi}^{\frac{1}{2}} = 2\Psi}$, ${\chi} = {\chi} = {\chi}$

$$S(\frac{9}{2}) = \int_{0}^{24} 2^{16 - \frac{9}{18}} dq - 2^{\frac{14}{3}} \times 24$$

$$= \frac{18}{20} (2^{6} - 2^{\frac{14}{3}}) - 2^{\frac{14}{3}} \times 24.$$

$$PS(24) = 2^{\frac{14}{3}} \times 24 - \int_{0}^{24} 4^{(1+\frac{9}{18})} d_{8} = 2^{\frac{14}{3}} \times 24 - \frac{9}{\ln 2} (2^{\frac{14}{3}} - 2^{2})$$

$$TS(24) = CS(24) + PS(24) = \frac{9}{\ln 2} (2^{7} + 2^{2} - 3 \times 2^{\frac{14}{3}})$$

4. Now due to improvements of technology, the supply curve shifts down to $S(q) = 4^{\left(\frac{1}{2} + \frac{q}{18}\right)}$. Find the maximum total surplus for this case.

Solve
$$q^*$$
 such that $D(q^*) = S(q^*)$
 $\Rightarrow 2^{(6-\frac{q^*}{18})} = 4^{(\frac{1}{2} + \frac{q^*}{18})} \Rightarrow 6^{-\frac{q^*}{18}} = 1 + \frac{q^*}{9} \Rightarrow q^* = 30$

Total surplus obtains maximum value when 8 = 30.

$$TS(30) = \int_{0}^{30} 2^{(6-\frac{8}{18})} 4^{(\frac{1}{2}+\frac{4}{18})} J_{8} = \frac{9}{2} \left[2^{7} - 2^{\frac{16}{3}} - 2^{\frac{10}{3}} + 2 \right]$$

In general, the demand function p = D(3) is decreasing with inverse function $g = D^{-1}(P)$. For price P, the consumer surplus at price p is $CS(p) \equiv \int_{0}^{\overline{D(p)}} D(q) dq - p \cdot \overline{D'(p)}.$ Let's compute $\frac{d}{dp}$ CS(p). By the fundamental theorem of Calculus $\frac{d}{dp} CS(p) = \frac{d}{dp} \left[\int_{0}^{D'(p)} D(q) dq - P \cdot D'(p) \right]$ $= D(D_{(b)}) \cdot \frac{qb}{q} D_{(b)} - D_{(b)} - b \frac{qb}{q} D_{(b)}$ $= p \cdot \frac{d}{dp} \vec{D}(p) - \vec{D}(p) - p \frac{d}{dp} \vec{D}(p)$ = -D(p) < 0 because D(p) should be the corresponding & which is positive. Hence (S(P) is decreasing with respect to p. P As Pincreases, CS(P+h)

CS(p) decreases.

And $\frac{d}{dp}$ CS(p) = $-\overline{D}$ (p).

Po the point \overline{D} (p)